AUSTRALIAN JOURNAL OF BIOMEDICAL RESEARCH
Review Article

A Systematic Review of Augmented and Virtual Reality for STEM Learning: Engagement, Cognitive Load, and Transfer Outcomes

Australian Journal of Biomedical Research, 1(2), 2025, aubm010, https://doi.org/10.63946/aubiomed/17464
Publication date: Nov 28, 2025
Full Text (PDF)

ABSTRACT

Immersive technologies such as augmented reality (AR) and virtual reality (VR) are increasingly used in science, technology, engineering, and mathematics (STEM) education, yet their effects on student engagement, cognitive load, and transfer of learning remain fragmented. This systematic review synthesized empirical research on AR and VR in STEM learning environments to examine how these technologies influence behavioral, emotional, and cognitive engagement; intrinsic, extraneous, and germane cognitive load; and near- and far-transfer outcomes. Following PRISMA 2020 guidelines, we searched major education and psychology databases for studies involving AR/VR STEM interventions with quantified engagement, cognitive load, or transfer measures. Twenty studies met the inclusion criteria. Across the sample, immersive technologies consistently enhanced student engagement, particularly by increasing interest, enjoyment, and time-on-task, although effects on deeper cognitive engagement were more variable. Augmented reality frequently reduced extraneous cognitive load by integrating digital information directly into physical learning tasks, whereas fully immersive virtual reality sometimes increased overall mental effort when environments were perceptually rich or navigation demands were high. Transfer of learning outcomes was generally positive but modest: most studies reported gains in near transfer, defined here as applying what was learned to tasks or problems that closely resemble the original learning context, while evidence for far transfer, defined as applying learning to novel, more complex, or substantially different situations, was limited and inconsistently assessed. Taken together, the findings indicate that immersive technologies most reliably improve student engagement and near-transfer learning in STEM when instructional design deliberately manages cognitive load, rather than relying on immersion alone to produce learning gains. These results underscore the importance of aligning immersive features with targeted learning goals and providing structured guidance and reflection to support meaningful transfer of learning.

KEYWORDS

Augmented Reality Virtual Reality STEM Education Cognitive Load Learning Transfer

CITATION (Vancouver)

Ogunjobi DT, Abu S, Ajayi AB, Emenike MI, Obong EE, Mensah TK. A Systematic Review of Augmented and Virtual Reality for STEM Learning: Engagement, Cognitive Load, and Transfer Outcomes. Australian Journal of Biomedical Research. 2025;1(2):aubm010. https://doi.org/10.63946/aubiomed/17464
APA
Ogunjobi, D. T., Abu, S., Ajayi, A. B., Emenike, M. I., Obong, E. E., & Mensah, T. K. (2025). A Systematic Review of Augmented and Virtual Reality for STEM Learning: Engagement, Cognitive Load, and Transfer Outcomes. Australian Journal of Biomedical Research, 1(2), aubm010. https://doi.org/10.63946/aubiomed/17464
Harvard
Ogunjobi, D. T., Abu, S., Ajayi, A. B., Emenike, M. I., Obong, E. E., and Mensah, T. K. (2025). A Systematic Review of Augmented and Virtual Reality for STEM Learning: Engagement, Cognitive Load, and Transfer Outcomes. Australian Journal of Biomedical Research, 1(2), aubm010. https://doi.org/10.63946/aubiomed/17464
AMA
Ogunjobi DT, Abu S, Ajayi AB, Emenike MI, Obong EE, Mensah TK. A Systematic Review of Augmented and Virtual Reality for STEM Learning: Engagement, Cognitive Load, and Transfer Outcomes. Australian Journal of Biomedical Research. 2025;1(2), aubm010. https://doi.org/10.63946/aubiomed/17464
Chicago
Ogunjobi, Damilare Timothy, Stephen Abu, Ademola Busayo Ajayi, Maureen Ifeyinwa Emenike, Enobong Edoabasi Obong, and Thomas Kofi Mensah. "A Systematic Review of Augmented and Virtual Reality for STEM Learning: Engagement, Cognitive Load, and Transfer Outcomes". Australian Journal of Biomedical Research 2025 1 no. 2 (2025): aubm010. https://doi.org/10.63946/aubiomed/17464
MLA
Ogunjobi, Damilare Timothy et al. "A Systematic Review of Augmented and Virtual Reality for STEM Learning: Engagement, Cognitive Load, and Transfer Outcomes". Australian Journal of Biomedical Research, vol. 1, no. 2, 2025, aubm010. https://doi.org/10.63946/aubiomed/17464

REFERENCES

  1. Ibáñez M-B, Delgado-Kloos C. Augmented reality for STEM learning: A systematic review. Comput Educ. 2018;123:109–23. <a href="https://doi.org/10.1016/j.compedu.2018.04.002">https://doi.org/10.1016/j.compedu.2018.04.002</a>
  2. Makransky G, Mayer RE. Benefits of taking a virtual field trip in immersive virtual reality: Evidence for the immersion principle in multimedia learning. Educ Psychol Rev. 2022;34(3):1771–98. <a href="https://doi.org/10.1007/s10648-022-09692-2">https://doi.org/10.1007/s10648-022-09692-2</a>
  3. Garzón J, Acevedo J. Meta-analysis of the impact of augmented reality on students’ learning gains. Educ Res Rev. 2019;27:244–60. <a href="https://doi.org/10.1016/j.edurev.2019.04.001">https://doi.org/10.1016/j.edurev.2019.04.001</a>
  4. Radianti J, Majchrzak TA, Fromm J, Wohlgenannt I. A systematic review of immersive virtual reality applications for higher education. Comput Educ. 2020;147:103778. <a href="https://doi.org/10.1016/j.compedu.2019.103778">https://doi.org/10.1016/j.compedu.2019.103778</a>
  5. Akçayır M, Akçayır G. Advantages and challenges associated with augmented reality for education: A systematic review. Educ Res Rev. 2017;20:1–11. <a href="https://doi.org/10.1016/j.edurev.2016.11.002">https://doi.org/10.1016/j.edurev.2016.11.002</a>
  6. Mystakidis S, Christopoulos A, Pellas N. A systematic mapping review of augmented reality applications to support STEM learning in higher education. Educ Inf Technol. 2022;27:1883–927. <a href="https://doi.org/10.1007/s10639-021-10682-1">https://doi.org/10.1007/s10639-021-10682-1</a>
  7. Sirakaya M, Sirakaya DA. Augmented reality in STEM education: A systematic review. Interact Learn Environ. 2022;30(8):1556–69. <a href="https://doi.org/10.1080/10494820.2019.1635497">https://doi.org/10.1080/10494820.2019.1635497</a>
  8. Fredricks JA, Blumenfeld PC, Paris AH. School engagement: Potential of the concept, state of the evidence. Rev Educ Res. 2004;74(1):59–109. <a href="https://doi.org/10.3102/00346543074001059">https://doi.org/10.3102/00346543074001059</a>
  9. Chang R-C, Chung L-Y, Huang Y-M. Interactive augmented reality for plant education: Comparing AR and video. Interact Learn Environ. 2016;24(6):1245–64. <a href="https://doi.org/10.1080/10494820.2014.982132">https://doi.org/10.1080/10494820.2014.982132</a>
  10. Deci EL, Ryan RM. The “what” and “why” of goal pursuits. Psychol Inquiry. 2000;11(4):227–68. <a href="https://doi.org/10.1207/S15327965PLI1104_01">https://doi.org/10.1207/S15327965PLI1104_01</a>
  11. Beyoğlu D, Hürsen Ç, Nasiboğlu A. Use of mixed reality applications in teaching of science. Educ Inf Technol. 2020;25(5):4271–86. <a href="https://doi.org/10.1007/s10639-020-10166-8">https://doi.org/10.1007/s10639-020-10166-8</a>
  12. Sweller J. Cognitive load during problem solving: Effects on learning. Cogn Sci. 1988;12(2):257–85. <a href="https://doi.org/10.1207/s15516709cog1202_4">https://doi.org/10.1207/s15516709cog1202_4</a>
  13. Cai S, Liu ER, Shen Y, Liu C-H, Li S-H, Shen Y-H. Probability learning using AR: Impact on gains and attitudes. Interact Learn Environ. 2020;28(5):560–73. <a href="https://doi.org/10.1080/10494820.2018.1548499">https://doi.org/10.1080/10494820.2018.1548499</a>
  14. Liu Q, Yu S, Chen W, Wang Q, Xu S. AR magnetic experimental tool effects on knowledge and cognitive load. J Comput Assist Learn. 2021;37(3):645–56. <a href="https://doi.org/10.1111/jcal.12424">https://doi.org/10.1111/jcal.12424</a>
  15. Liu R, Wang L, Koszalka TA, Wan K. Effects of immersive VR classrooms on achievement, motivation, and cognitive load. J Comput Assist Learn. 2022;38(5):1422–33. <a href="https://doi.org/10.1111/jcal.12682">https://doi.org/10.1111/jcal.12682</a>
  16. Markowitz DM, Laha R, Perone BP, Pea RD, Bailenson JN. VR field trips to facilitate learning about climate change. Front Psychol. 2018;9:2364. <a href="https://doi.org/10.3389/fpsyg.2018.02364">https://doi.org/10.3389/fpsyg.2018.02364</a>
  17. Tsai C-Y, Ho Y-C, Nisar H. Virtual chemistry laboratories. Appl Sci. 2021;11(21):10070. <a href="https://doi.org/10.3390/app112110070">https://doi.org/10.3390/app112110070</a>
  18. Parong J, Mayer RE. Learning science in immersive virtual reality. J Educ Psychol. 2018;110(6):785–97. <a href="https://doi.org/10.1037/edu0000241">https://doi.org/10.1037/edu0000241</a>
  19. Zhang W, Wang Z. Theory and practice of VR/AR in K–12 science. Sustainability. 2021;13(22):12646. <a href="https://doi.org/10.3390/su132212646">https://doi.org/10.3390/su132212646</a>
  20. Johnson-Glenberg MC, Birchfield DA, Tolentino L, Koziupa T. Embodied learning in mixed reality: Two science studies. J Educ Psychol. 2014;106(1):86–104. <a href="https://doi.org/10.1037/a0034008">https://doi.org/10.1037/a0034008</a>
  21. Hsu H-P, Zou W-T, Hughes JE. Developing digital literacy through AR creation. J Educ Comput Res. 2019;57(6):1400–35. <a href="https://doi.org/10.1177/0735633118794515">https://doi.org/10.1177/0735633118794515</a>
  22. Huang T-C, Chen C-C, Chou Y-W. Animating eco-education via augmented reality. Comput Educ. 2016;96:72–82. <a href="https://doi.org/10.1016/j.compedu.2016.02.008">https://doi.org/10.1016/j.compedu.2016.02.008</a>
  23. Huang T-C, Chen C-C, Hsu W-P. Do learning styles matter? Educ Technol Soc. 2019;22(1):70–81.
  24. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. <a href="https://doi.org/10.1136/bmj.n71">https://doi.org/10.1136/bmj.n71</a>
  25. Hong QN, Pluye P, Fàbregues S, Bartlett G, Boardman F, Cargo M, et al. Mixed Methods Appraisal Tool (MMAT), version 2018. Educ Inf. 2018;34(4):285–91. <a href="https://doi.org/10.3233/EFI-180221">https://doi.org/10.3233/EFI-180221</a>
  26. Popay J, Roberts H, Sowden A, Petticrew M, Arai L, Rodgers M, et al. Guidance on the conduct of narrative synthesis in systematic reviews: a product from the ESRC Methods Programme. 2006. <a href="https://www.lancaster.ac.uk/media/lancaster-university/content-assets/documents/fhm/dhr/chir/NSsynthesisguidanceVersion1-April2006.pdf">https://www.lancaster.ac.uk/media/lancaster-university/content-assets/documents/fhm/dhr/chir/NSsynthesisguidanceVersion1-April2006.pdf</a>
  27. Klingenberg S, Johansen M, Vrang LK, Makransky G. Can virtual reality replace real-life physics labs in high school? Phys Rev Phys Educ Res. 2020;16(1):010127. <a href="https://doi.org/10.1103/PhysRevPhysEducRes.16.010127">https://doi.org/10.1103/PhysRevPhysEducRes.16.010127</a>
  28. Önal NT, Önal N. The effect of augmented reality on the astronomy achievement and interest level of gifted students. Educ Inf Technol. 2021;26(4):4573–99. <a href="https://doi.org/10.1007/s10639-021-10474-7">https://doi.org/10.1007/s10639-021-10474-7</a>
  29. Chng E, Tan AL, Tan SC. Emerging technologies in STEM education: A review of artificial intelligence and immersive technologies. J STEM Educ Res. 2023;6:385–407. <a href="https://doi.org/10.1007/s41979-022-00113-w">https://doi.org/10.1007/s41979-022-00113-w</a>
  30. Garzón J. An overview of twenty-five years of augmented reality in education. Multimodal Technol Interact. 2021;5(7):37. <a href="https://doi.org/10.3390/mti5070037">https://doi.org/10.3390/mti5070037</a>
  31. Lin X, Chiu TKF, Luo S, Wang L, Chen Z. The role of a teacher learning community in integrating augmented reality into STEM education. Teach Teach Educ. 2024;141:104490. <a href="https://doi.org/10.1016/j.tate.2024.104490">https://doi.org/10.1016/j.tate.2024.104490</a>
  32. Mayer RE, editor. The Cambridge Handbook of Multimedia Learning. 2nd ed. New York: Cambridge University Press; 2014. <a href="https://doi.org/10.1017/CBO9781139547369">https://doi.org/10.1017/CBO9781139547369</a>
  33. Matovu H, Ungu DAK, Won M, Tsai C-C, Treagust DF, Mocerino M, et al. Immersive virtual reality for science learning: Design, implementation, and evaluation. Stud Sci Educ. 2023;59(2):205–44. <a href="https://doi.org/10.1080/03057267.2022.2124710">https://doi.org/10.1080/03057267.2022.2124710</a>

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.