AUSTRALIAN JOURNAL OF BIOMEDICAL RESEARCH
Original Article

Beetroot Fruit Powder Attenuates Cardiotoxicity Induced by Monosodium Glutamate via Inhibition of Oxidative Stress and Inflammation in Rats

Australian Journal of Biomedical Research, 1(2), 2025, aubm011, https://doi.org/10.63946/aubiomed/17520
Publication date: Dec 07, 2025
Full Text (PDF)

ABSTRACT

Background: Cardiotoxicity, defined as damage to cardiac muscle resulting from exposure to toxic substances, is a growing concern in both environmental and medical contexts. Monosodium glutamate (MSG), a widely used food additive, has been implicated in cardiac toxicity through mechanisms involving inflammation, oxidative stress, and apoptosis. Beetroot (Beta vulgaris), rich in nitrates, betalains, and flavonoids, possesses strong antioxidant and anti-inflammatory properties that may counteract MSG-induced cardiac damage.
Objective: This study investigated the cardioprotective potential of beetroot fruit powder (BFP) against MSG-induced cardiotoxicity in male Wistar rats by evaluating its effects on inflammatory, oxidative, apoptotic, cardiac functional markers, and DNA fragmentation index.
Methods: Fifty male Wistar rats (185–205 g) were randomly divided into five groups: control, MSG-only, MSG + low-dose BFP (0.18 g/kg), MSG + high-dose BFP (0.36 g/kg), and MSG recovery group. MSG was administered orally (6 g/kg) for 21 days. BFP treatments were co-administered with MSG. On day 22, cardiac tissues were harvested and analyzed for inflammatory markers (MPO, NO, CRP, TNF-α, IL-1β, NF-κB), oxidative stress markers (MDA, SOD, CAT, GSH, GPx, GST), cardiac enzymes (LDH, SDH, CK, GGT), caspase-3 activity, and DNA fragmentation (TUNEL assay). Histological examination was also performed.
Results: MSG exposure significantly elevated pro-inflammatory cytokines, oxidative stress, caspase-3 activity, and cardiac dysfunction markers, alongside pronounced DNA fragmentation and histological alterations. BFP co-treatment, particularly at the high dose, significantly attenuated these changes by reducing pro-inflammatory markers, restoring antioxidant enzyme levels, normalizing cardiac enzyme activities, and lowering DNA fragmentation index. Histology confirmed structural recovery of cardiac tissue in BFP-treated groups. These results underscore the potential of BFP as a dietary intervention to mitigate chemically induced myocardial injury. While the MSG dose used exceeds typical human exposure, this model provides valuable mechanistic insights. Future studies should explore chronic, lower-dose MSG exposure, gene-level regulatory mechanisms, and translational trials in humans.
Conclusion: Beetroot fruit powder demonstrates a potent cardioprotective effect against MSG-induced toxicity by modulating oxidative, inflammatory, apoptotic, and functional biomarkers. These findings highlight its potential as a natural therapeutic agent for mitigating chemically-induced cardiac injury.

KEYWORDS

Beetroot Fruit Powder Monosodium Glutamate Cardiotoxicity Oxidative Stress Inflamation

CITATION (Vancouver)

Oyebamiji BO, Folawiyo MA, Owolabi BT, Ajayi AF. Beetroot Fruit Powder Attenuates Cardiotoxicity Induced by Monosodium Glutamate via Inhibition of Oxidative Stress and Inflammation in Rats. Australian Journal of Biomedical Research. 2025;1(2):aubm011. https://doi.org/10.63946/aubiomed/17520
APA
Oyebamiji, B. O., Folawiyo, M. A., Owolabi, B. T., & Ajayi, A. F. (2025). Beetroot Fruit Powder Attenuates Cardiotoxicity Induced by Monosodium Glutamate via Inhibition of Oxidative Stress and Inflammation in Rats. Australian Journal of Biomedical Research, 1(2), aubm011. https://doi.org/10.63946/aubiomed/17520
Harvard
Oyebamiji, B. O., Folawiyo, M. A., Owolabi, B. T., and Ajayi, A. F. (2025). Beetroot Fruit Powder Attenuates Cardiotoxicity Induced by Monosodium Glutamate via Inhibition of Oxidative Stress and Inflammation in Rats. Australian Journal of Biomedical Research, 1(2), aubm011. https://doi.org/10.63946/aubiomed/17520
AMA
Oyebamiji BO, Folawiyo MA, Owolabi BT, Ajayi AF. Beetroot Fruit Powder Attenuates Cardiotoxicity Induced by Monosodium Glutamate via Inhibition of Oxidative Stress and Inflammation in Rats. Australian Journal of Biomedical Research. 2025;1(2), aubm011. https://doi.org/10.63946/aubiomed/17520
Chicago
Oyebamiji, Blessing Oluwapelumi, Moshood Abiola Folawiyo, Blessing Tolulope Owolabi, and Ayodeji Folorunsho Ajayi. "Beetroot Fruit Powder Attenuates Cardiotoxicity Induced by Monosodium Glutamate via Inhibition of Oxidative Stress and Inflammation in Rats". Australian Journal of Biomedical Research 2025 1 no. 2 (2025): aubm011. https://doi.org/10.63946/aubiomed/17520
MLA
Oyebamiji, Blessing Oluwapelumi et al. "Beetroot Fruit Powder Attenuates Cardiotoxicity Induced by Monosodium Glutamate via Inhibition of Oxidative Stress and Inflammation in Rats". Australian Journal of Biomedical Research, vol. 1, no. 2, 2025, aubm011. https://doi.org/10.63946/aubiomed/17520

REFERENCES

  1. Mamoshina P, Rodríguez B, Bueno-Orovio A. Toward a broader view of mechanisms of drug cardiotoxicity. Cell Rep Med. 2021;2:100216. doi:10.1016/j.xcrm.2021.100216.
  2. Hazzaa S, El-Roghy E, Eldaim M, Elgarawany G. Monosodium glutamate induces cardiac toxicity via oxidative stress, fibrosis, and P53 proapoptotic protein expression in rats. Environ Sci Pollut Res Int. 2020;27(16):20014-24. doi:10.1007/s11356-020-08436-6.
  3. Ogunmokunwa A, Ibitoye B. Monosodium glutamate (MSG) exposure induced oxidative stress and disrupted testicular hormonal regulation, exacerbating reproductive dysfunction in male WISTAR rats. Endocr Metab Sci. 2025;:100226. doi:10.1016/j.endmts.2025.100226.
  4. Dai C, Li Q, May H, Li C, Zhang G, Sharma G, et al. Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Rep. 2020;32(8):108087. doi:10.1016/j.celrep.2020.108087.
  5. Clifford T, Howatson G, West D, Stevenson E. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients. 2015;7(4):2801-22. doi:10.3390/nu7042801.
  6. Nalugo H, Ninsiima HI, Kasozi KI, Nabirumbi R, Osuwat LO, Matama K, et al. Monosodium Glutamate Maintains Antioxidant Balance in the Neuro-Retinal Axis of Male Wistar Rats. J Exp Pharmacol. 2021;13:681-90. doi: https://doi.org/10.21203/rs.3.rs-508301/v1.
  7. Abd-El-Fattah ME, Dessouki AA, Abdelnaeim NS, Emam BM. Protective effect of Beta vulgaris roots supplementation on anemic phenylhydrazine-intoxicated rats. Environ Sci Pollut Res Int. 2021;28(46):65731-42. doi:10.1007/s11356-021-15302-6.
  8. Sarfaraz S, Ikram R, Munawwar R, Osama M, Gul S, Sufian M. Rising trend of Nutraceuticals: Evaluation of lyophilized beetroot powder at different doses for its hypolipidemic effects. Pak J Pharm Sci. 2021;34(4):1315-22. PMID: 34799303.
  9. Ajayi AF, Akhigbe RE. Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil Res Pract. 2020;6:5. doi:10.1186/s40738-020-00074-3.
  10. Zaidi AS, Muzaffar M, Gautam S, Alam I. Effect of curcumin on inflammatory and oxidative stress markers in Lipopolysaccharide induced animal models of pre-eclampsia. Physiology. 2024 May 1;39(S1):1737. doi:10.1152/physiol.2024.39.S1.1737.
  11. Goiffon RJ, Martinez SC, Piwnica-Worms D. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma. Nat Commun. 2015;6:6271. doi:10.1038/ncomms7271.
  12. Vargas-Maya NI, Padilla-Vaca F, Romero-González OE, Rosales-Castillo EAS, Rangel-Serrano Á, Arias-Negrete S, et al. Refinement of the Griess method for measuring nitrite in biological samples. J Microbiol Methods. 2021;187:106260. doi:10.1016/j.mimet.2021.106260.
  13. Baydemir G, Bettazzi F, Palchetti I, Voccia D. Strategies for the development of an electrochemical bioassay for TNF-alpha detection by using a non-immunoglobulin bioreceptor. Talanta. 2016;151:141-7. doi:10.1016/j.talanta.2016.01.021.
  14. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017;524:13-30. doi:10.1016/j.ab.2016.10.021.
  15. Islam MN, Rauf A, Fahad FI, Emran TB, Mitra S, Olatunde A, et al. Superoxide dismutase: an updated review on its health benefits and industrial applications. Crit Rev Food Sci Nutr. 2022;62(26):7282-300. doi:10.1080/10408398.2021.1913400.
  16. Afsar T, Razak S, Batoo KM, Khan MR. Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats. BMC Complement Altern Med. 2017;17(1):554. https://doi.org/10.1186/s12906-017-2061-0.
  17. Kalinovic S, Stamm P, Oelze M, Daub S, Kröller-Schön S, Kvandová M, et al. Comparison of three methods for in vivo quantification of glutathione in tissues of hypertensive rats. Free Radic Res. 2021;55(9-10):1048-61. doi:10.1080/10715762.2021.2016735.
  18. Schwarz M, Löser A, Cheng Q, Wichmann-Costaganna M, Schädel P, Werz O, et al. Side-by-side comparison of recombinant human glutathione peroxidases identifies overlapping substrate specificities for soluble hydroperoxides. Redox Biol. 2023;59:102593. doi:10.1016/j.redox.2022.102593.
  19. Robin SKD, Ansari M, Uppugunduri CRS. Spectrophotometric Screening for Potential Inhibitors of Cytosolic Glutathione S-Transferases. J Vis Exp. 2020;(164). doi:10.3791/61924.
  20. Klein R, Nagy O, Tóthová C, Chovanová F. Clinical and Diagnostic Significance of Lactate Dehydrogenase and Its Isoenzymes in Animals. Vet Med Int. 2020;2020:5346483. doi:10.1155/2020/5346483.
  21. Moreno C, Santos RM, Burns R, Zhang WC. Succinate dehydrogenase and ribonucleic acid networks in cancer and other diseases. Cancers (Basel). 2020;12(11):3237. doi:10.3390/cancers12113237.
  22. Jiang L, Guo D, Wang L, Chang S, Li J, Zhan D, et al. Sensitive and selective SERS probe for detecting the activity of γ-glutamyl transpeptidase in serum. Anal Chim Acta. 2020;1099:119-25. doi:10.1016/j.aca.2019.11.041.
  23. Wynne C, Elmes R. Utilising a 1,8-naphthalimide probe for the ratiometric fluorescent visualisation of caspase-3. Front Chem. 2024;12:1418378. doi:10.3389/fchem.2024.1418378.
  24. Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33(2):291-300. doi:10.1007/s10815-015-0635-7.
  25. Sridharan D, Pracha N, Dougherty JA, Akhtar A, Alvi SB, Khan M. A one-stop protocol to assess myocardial fibrosis in frozen and paraffin sections. Methods Protoc. 2022;5(1):13. doi:10.3390/mps5010013.
  26. Reina-Couto M, Pereira-Terra P, Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in human heart failure: major mediators and therapeutic targets. Front Physiol. 2021;12:746494. doi:10.3389/fphys.2021.746494.
  27. Brzezińska-Rojek J, Sagatovych S, Malinowska P, Gadaj K, Prokopowicz M, Grembecka M. Antioxidant capacity, nitrite and nitrate content in beetroot-based dietary supplements. Foods. 2023;12(5):1017. doi:10.3390/foods12051017.
  28. Bodor GS. Biochemical markers of myocardial damage. EJIFCC. 2016;27(2):95-111. PMID: 27683527.
  29. Tan ML, Hamid SBS. Beetroot as a potential functional food for cancer chemoprevention, a narrative review. J Cancer Prev. 2021;26(1):1-17. doi:10.15430/JCP.2021.26.1.1.
  30. Barnes JL, Zubair M, John K, Poirier MC, Martin FL. Carcinogens and DNA damage. Biochem Soc Trans. 2018;46(5):1213-24. doi:10.1042/BST20180519.
  31. Banerjee A, Mukherjee S, Maji BK. Monosodium glutamate causes hepato-cardiac derangement in male rats. Hum Exp Toxicol. 2021;40(12_suppl):S359-S369. doi:10.1177/09603271211049550.

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.