AUSTRALIAN JOURNAL OF BIOMEDICAL RESEARCH
Review Article

Gene Editing Therapies for Sickle Cell Disease and β-Thalassemia: A Systematic Review of Clinical Outcomes and Safety

Australian Journal of Biomedical Research, 2(1), 2026, aubm012, https://doi.org/10.63946/aubiomed/17736
Publication date: Jan 13, 2026
Full Text (PDF)

ABSTRACT

Background: Sickle cell disease (SCD) and transfusion-dependent β-thalassemia (TDT) remain major global health burdens. Ex vivo gene-editing therapies aim to achieve durable fetal hemoglobin (HbF) induction or direct mutation correction.
Methods: We systematically reviewed clinical studies of CRISPR-Cas9 or base-editing therapies for SCD and TDT (MEDLINE, EMBASE, Web of Science, ClinicalTrials.gov, conference proceedings; 2010–03 December 2025). Eleven studies (>170 treated patients) reporting post-infusion outcomes were included.
Results: All therapies produced robust, pancellular HbF (30–65%) and total hemoglobin in/near the normal range. In TDT (n > 100 evaluable), transfusion independence (≥12 months, Hb ≥9 g/dL) was achieved in 89–100% across platforms, sustained up to >4 years. In SCD (n > 60 evaluable), adjudicated vaso-occlusive crises were eliminated for ≥12 months in ≥97% of patients treated with exagamglogene autotemcel and 100% in smaller cohorts (EDIT-301, BEAM-101). No graft failures occurred. Serious adverse events and one death were attributable to busulfan conditioning, not editing. No therapy-related malignancies or confirmed harmful off-target edits have been reported, although follow-up remains limited (median ~18 months, longest >4 years).
Conclusion: Current evidence from phase 1–3 trials demonstrates that ex vivo gene editing can achieve functional cure for many patients with TDT and severe SCD. Conditioning-related toxicity, limited long-term safety data, and delivery complexity remain critical barriers to broader implementation.

KEYWORDS

Gene Editing CRISPR-Cas9 Base Editing Sickle Cell Disease Β-Thalassemia Fetal Hemoglobin Transfusion Independence Systematic Review

CITATION (Vancouver)

Gab-Obinna CL, Oriaku I, Okeoma OI, Olowookere AK, Obong EE, Onyedum NN, et al. Gene Editing Therapies for Sickle Cell Disease and β-Thalassemia: A Systematic Review of Clinical Outcomes and Safety. Australian Journal of Biomedical Research. 2026;2(1):aubm012. https://doi.org/10.63946/aubiomed/17736
APA
Gab-Obinna, C. L., Oriaku, I., Okeoma, O. I., Olowookere, A. K., Obong, E. E., Onyedum, N. N., & Bala, J. I. (2026). Gene Editing Therapies for Sickle Cell Disease and β-Thalassemia: A Systematic Review of Clinical Outcomes and Safety. Australian Journal of Biomedical Research, 2(1), aubm012. https://doi.org/10.63946/aubiomed/17736
Harvard
Gab-Obinna, C. L., Oriaku, I., Okeoma, O. I., Olowookere, A. K., Obong, E. E., Onyedum, N. N., and Bala, J. I. (2026). Gene Editing Therapies for Sickle Cell Disease and β-Thalassemia: A Systematic Review of Clinical Outcomes and Safety. Australian Journal of Biomedical Research, 2(1), aubm012. https://doi.org/10.63946/aubiomed/17736
AMA
Gab-Obinna CL, Oriaku I, Okeoma OI, et al. Gene Editing Therapies for Sickle Cell Disease and β-Thalassemia: A Systematic Review of Clinical Outcomes and Safety. Australian Journal of Biomedical Research. 2026;2(1), aubm012. https://doi.org/10.63946/aubiomed/17736
Chicago
Gab-Obinna, Chidinma Lorretta, Ikemefula Oriaku, Obiageri Ihuarulam Okeoma, Adepeju Kafayat Olowookere, Enobong Edoabasi Obong, Nwamaka Nneka Onyedum, and Jazuli Isyaku Bala. "Gene Editing Therapies for Sickle Cell Disease and β-Thalassemia: A Systematic Review of Clinical Outcomes and Safety". Australian Journal of Biomedical Research 2026 2 no. 1 (2026): aubm012. https://doi.org/10.63946/aubiomed/17736
MLA
Gab-Obinna, Chidinma Lorretta et al. "Gene Editing Therapies for Sickle Cell Disease and β-Thalassemia: A Systematic Review of Clinical Outcomes and Safety". Australian Journal of Biomedical Research, vol. 2, no. 1, 2026, aubm012. https://doi.org/10.63946/aubiomed/17736

SUPPLEMENTARY FILES

Supplementary File

REFERENCES

  1. Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376(16):1561-73. doi:10.1056/NEJMra1510865
  2. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480-7. doi:10.2471/BLT.06.036673
  3. Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331-6. doi:10.1182/blood-2010-01-251348
  4. World Health Organization. Sickle-cell disease and other haemoglobin disorders. WHO Fact Sheet. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/sickle-cell-disease
  5. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376(9757):2018-31. doi:10.1016/S0140-6736(10)61029-X
  6. Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010–2050. PLoS Med. 2013;10(7):e1001484. doi:10.1371/journal.pmed.1001484
  7. Saunthararajah Y. Targeting sickle cell disease root-cause pathophysiology with small molecules. Haematologica. 2019;104(9):1720-30. doi:10.3324/haematol.2018.207530
  8. Elendu C, Amaechi DC, Alakwe-Ojimba CE, et al. Understanding sickle cell disease: Causes, symptoms, and treatment options. Medicine (Baltimore). 2023;102(38):e35237. doi:10.1097/MD.0000000000035237
  9. Longo F, Piolatto A, Ferrero GB, Piga A. Ineffective erythropoiesis in β-thalassaemia: Key steps and therapeutic options by drugs. Int J Mol Sci. 2021;22(13):7229. doi:10.3390/ijms22137229
  10. Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev. 2018;32(2):130-43. doi:10.1016/j.blre.2017.10.001
  11. Tebbi CK. Sickle cell disease: A review. Hemato. 2022;3(2):341-66. doi:10.3390/hemato3020024
  12. World Health Organization. Sickle-cell disease and other haemoglobin disorders. WHO Fact Sheet. 2025. Available from: https://www.who.int/news-room/fact-sheets/detail/sickle-cell-disease
  13. Yasara N, Premawardhena A, Mettananda S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: The role revisited during the COVID-19 pandemic. Orphanet J Rare Dis. 2021;16:114. doi:10.1186/s13023-021-01757-w
  14. Langer AL. Beta-thalassemia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 2000 Sep 28 [updated 2024 Feb 8]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1426/
  15. Kattamis A, Kwiatkowski JL, Aydinok Y. Thalassaemia. Lancet. 2022;399(10343):2310-24. doi:10.1016/S0140-6736(22)00536-0
  16. Bhalla N, Bhargav A, Yadav SK, Singh AK. Allogeneic hematopoietic stem cell transplantation to cure sickle cell disease: A review. Front Med. 2023;10:1036939. doi:10.3389/fmed.2023.1036939
  17. Musallam KM, Bou-Fakhredin R, Cappellini MD, Taher AT. 2021 update on clinical trials in β-thalassemia. Am J Hematol. 2021;96(11):1518-31. doi:10.1002/ajh.26316
  18. Testa U, Leone G, Cappellini MD. Therapeutic gene editing for hemoglobinopathies. Mediterr J Hematol Infect Dis. 2024;16(1):e2024068. doi:10.4084/MJHID.2024.068
  19. Papizan JB, Porter SN, Sharma A, Pruett-Miller SM. Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies. J Biomed Res. 2020;35(2):115-34. doi:10.7555/JBR.34.20200096
  20. Dimitrievska M, Bansal D, Vitale M, et al. Revolutionising healing: Gene editing’s breakthrough against sickle cell disease. Blood Rev. 2024;65:101185. doi:10.1016/j.blre.2024.101185
  21. de Souza BN, Roriz B, et al. A systematic review of clinical trials for gene therapies for beta-hemoglobinopathy worldwide. Orphanet J Rare Dis. 2023;18:168. PMID:37318395
  22. Traxler EA, Jin J, Briggs C, et al. Genome editing strategies for fetal hemoglobin induction in β-hemoglobinopathies. Hum Mol Genet. 2020;29(R1):R100-R108. doi:10.1093/hmg/ddaa159
  23. Testa U, Leone G, Cappellini MD. Therapeutic gene editing for hemoglobinopathies: Opportunities and challenges. Mediterr J Hematol Infect Dis. 2024;16(1):e2024068. doi:10.4084/MJHID.2024.068
  24. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst Rev. 2021;10:89. doi:10.1186/s13643-021-01626-4
  25. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.5 (updated Aug 2024). Cochrane; 2024. Available from: https://training.cochrane.org/handbook
  26. U.S. National Library of Medicine. ClinicalTrials.gov: Background and description. Available from: https://clinicaltrials.gov/
  27. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. doi:10.1126/science.1225829
  28. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405. doi:10.1016/j.tibtech.2013.04.004
  29. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses. J Clin Epidemiol. 2009;62(10):1006-12. doi:10.1016/j.jclinepi.2009.06.006
  30. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015. Syst Rev. 2015;4:1. doi:10.1186/2046-4053-4-1
  31. Khoury R, Goldberg A, et al. Early-phase and first-in-human trials: Design considerations and reporting. Nat Med. 2022;28:1249-57. doi:10.1038/s41591-022-01845-4
  32. Cavazzana M, Bushman FD, Miccio A, et al. Gene therapy for hemoglobinopathies: From gene addition to genome editing. Blood. 2017;130(24):2530-40. doi:10.1182/blood-2017-06-787473
  33. Cochrane Methods. Risk of Bias 2 (RoB 2) tool. Updated 2025. Available from: https://methods.cochrane.org/risk-bias-2
  34. Cochrane Methods. ROBINS-I: Risk Of Bias In Non-randomised Studies-of Interventions. Available from: https://methods.cochrane.org/methods-cochrane/robins-i-tool
  35. Joanna Briggs Institute. JBI Critical Appraisal Checklist for Case Series. 2020. Available from: https://jbi.global/critical-appraisal-tools
  36. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Kattamis A, et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252-60. doi:10.1056/NEJMoa2031054
  37. Cappellini MD, Kattamis A, Locatelli F, Porter JB, Taher AT, Viprakasit V, et al. Exagamglogene autotemcel for transfusion-dependent β-thalassemia. N Engl J Med. 2024;390(18):1663-76. doi:10.1056/NEJMoa2309673
  38. Frangoul H, Locatelli F, Sharma A, Foell J, He L, Lee I, et al. Exagamglogene autotemcel for severe sickle cell disease. N Engl J Med. 2024;390(18):1649-62. doi:10.1056/NEJMoa2309676
  39. Hanna J, Bruins W, O’Brien S, et al. Efficacy and safety of EDIT-301 in sickle cell disease: Interim RUBY trial results. Blood. 2023;142(Suppl 1):3315.
  40. Fu R, Lai Y, Liang J, Huang J, Peng L, Liu J, et al. CRISPR-Cas9 editing targeting the BCL11A enhancer in pediatric transfusion-dependent β-thalassemia. HemaSphere. 2022;6(S1):1346-7.
  41. Zheng K, Liang J, Huang J, Lai Y, Yang G, Chen X, et al. Interim results of BRL-101 in transfusion-dependent β-thalassemia. Blood. 2023;142(Suppl 1):4994.
  42. Fu R, Yang G, Lai Y, Liang J, Huang J, Peng L, et al. Long-term follow-up of BRL-101 in transfusion-dependent β-thalassemia. Blood. 2023;142(Suppl 1):4995.
  43. Wang L, Xu H, Liu R, Zhou S, Li H, Zhang Y, et al. RM-001 promoter editing in transfusion-dependent β-thalassemia: Phase 1 interim results. HemaSphere. 2023;7(S3):e613965.
  44. Liu R, Wang L, Xu H, Zhou S, Zhang Y, Li H, et al. Updated RM-001 results in transfusion-dependent β-thalassemia. HemaSphere. 2024;8(S1):4146.
  45. BEACON Investigators. Interim clinical data from the BEAM-101 BEACON phase 1/2 trial in sickle cell disease. Beam Therapeutics; 2024. Available from: https://beamtx.com
  46. Turrell V. Base editing moves toward clinical reality. Nat Biotechnol. 2024;42(4):375-7. doi:10.1038/s41587-024-02062-x
  47. Graphite Bio Inc. CEDAR: A study of GPH101 (nula-cel) for sickle cell disease. ClinicalTrials.gov Identifier: NCT04819841. 2021. Available from: https://clinicaltrials.gov/study/NCT04819841

LICENSE

Creative Commons License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.